
Exercice 1. La fonction dilogarithme (d’après CCINP PC 2023 )
Dans cet exercice, on commence par définir la fonction dilogarithme dans la première partie, puis on étudie
quelques-unes de ses propriétés dans les parties suivantes.
On admet et on pourra utiliser librement l’égalité :

+∞
∑

n=1

1

n2
=

π2

6
.

Partie I - Existence et premières propriétés de la fonction dilogarithme

Dans cette partie, on considère la fonction f : ]0 ; +∞[ × ]−∞ ; 1] → R définie par :

∀(t, x) ∈ ]0 ; +∞[ × ]−∞ ; 1], f(t, x) =
t

et −x
.

Q1. Justifier que la fonction f est bien définie sur ]0 ; +∞[ × ]−∞ ; 1].

Soient (t, x) ∈ ]0 ; +∞[ × ]−∞ ; 1]. Comme t > 0, on a et > 1, d’où et −x > 1 − x > 0 car x < 1. En

particulier, on a toujours et −x ̸= 0 donc f est bien définie sur ]0 ; +∞[ × ]−∞ ; 1].

Q2. Montrer que la fonction t 7→ f(t, 1) est intégrable sur ]0 ; +∞[.

D’abord, d’après la question précédente, t 7→ f(t, 1) =
t

et −1
est bien définie sur ]0 ; +∞[ et y est

continue comme quotient de fonctions usuelles dont le dénominateur ne s’annule pas.

• On a f(t, 1) =
t

et −1
DL
=

t→0

t

1 + t + o(t) − 1
∼

t→0
1 donc f est prolongeable par continuité en 0, d’où

t 7→ f(t, 1) intégrable sur [0 ; 1] .

• Par croissances comparées, on a f(t, 1) =
+∞

o(1/t2). Comme t 7→ 1/t2 est intégrable sur [1 ; +∞[

(intégrale de Riemann avec 2 > 1), par comparaison, t 7→ f(t, 1) est intégrable sur [1 ; +∞[ .

Bilan : t 7→ f(t, 1) est intégrable sur ]0 ; +∞[.

Q3. Soit x ∈ ]−∞ ; 1]. En comparant les fonctions t 7→ f(t, x) et t 7→ f(t, 1), montrer que t 7→ f(t, x) est
intégrable sur ]0 ; +∞[.

Soit t > 0. Comme x ⩽ 1, on a −x ⩾ −1, d’où et −x ⩾ et −1. En passant à l’inverse et en multipliant

par t > 0, on obtient f(t, x) ⩽ f(t, 1) . De plus, d’après Q1, f(t, x) ⩾ 0.

Or, d’après la question précédente, t 7→ f(t, 1) est intégrable sur ]0 ; +∞[ donc par comparaison de

fonctions positives , t 7→ f(t, x) est intégrable sur ]0 ; +∞[.

D’après les résultats précédents, on peut définir la fonction L : ]−∞ ; 1] → R par :

∀x ∈ ]−∞ ; 1], L(x) = x

∫ +∞

0
f(t, x) dt.

Cette dernière est appelée fonction dilogarithme.

Q4. Montrer que la fonction L est continue sur ]−∞ ; 1].

Appliquons le théorème de continuité d’une intégrale à paramètre à x 7→

∫ +∞

0
f(t, x) dt .

– Pour tout t ∈ ]0 ; +∞[, x 7→ f(t, x) est continue sur ]−∞ ; 1] (cf Q2).

– Pour tout x ∈ ]−∞ ; 1], t 7→ f(t, x) est continue (par morceaux) sur ]0 ; +∞[.
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– Pour tout x ∈ ]−∞ ; 1], t ∈ ]0 ; +∞[, d’après la question précédente, 0 < f(t, x) ⩽ f(t, 1) = ϕ(t).

On a ϕ indépendante de x et intégrable sur ]0 ; +∞[ par Q2.

Ainsi x 7→

∫ +∞

0
f(t, x) dt est continue sur ]−∞ ; 1]. De plus, x 7→ x est continue sur R.

Finalement, par produit de fonctions continues, L est continue sur ]−∞ ; 1] .

Partie II - Développement en série

Dans cette partie, on montre que la fonction L peut s’écrire comme la somme d’une série. On considère un
nombre réel x ∈ [−1 ; 1]. Pour tout n ∈ N, on définit la fonction sn : ]0 ; +∞[ → R par

∀t ∈]0, +∞[, sn(t) = t e−(n+1)t xn.

Q5. Soit n ∈ N. Montrer que l’intégrale

∫ +∞

0
sn(t) dt converge et que

∫ +∞

0
sn(t) dt =

xn

(n + 1)2
.

Ici x ∈ [−1 ; 1] et n ∈ N sont fixés. On peut donc sortir le xn de l’intégrale par simple linéarité et

n’étudier que

∫ +∞

0
t e−(n+1)t dt.

• D’abord t 7→ t e−(n+1)t est continue et positive sur [0 ; +∞[ (en particulier pas de problème en 0).

Comme n + 1 > 0, par croissances comparées, t e−(n+1)t =
+∞

o(1/t2).

Or t 7→
1

t2
est intégrable en +∞, donc par comparaison de fonctions positives l’intégrale

∫ +∞

0
sn(t) dt

est convergente .

• Pour le calcul, posons

{

u = t

v′ = e−(n+1)t
et

{

u′ = 1

v = −1
n+1 e−(n+1)t

. On a u(0)v(0) = 0 et u(t)v(t) −−−−→
t→+∞

0

par croissances comparées.

Ainsi par intégration par parties généralisées , on a 1

∫ +∞

0
t e−(n+1)t dt =

∫ +∞

0

1

n + 1
e−(n+1)t dt =

1

n + 1

[

−1

n + 1
e−(n+1)t

]+∞

0

=
1

(n + 1)2
.

Enfin, en multipliant par la constante xn, on obtient comme souhaité

∫ +∞

0
sn(t) dt =

xn

(n + 1)2
.

Q6. Montrer que la série de fonctions
∑

n⩾0

sn converge simplement sur ]0 ; +∞[ et que :

∀t ∈ ]0 ; +∞[,
+∞
∑

n=0

sn(t) = f(t, x).

On rappelle que x ∈ [−1 ; 1] est fixé. Soit t > 0. On écrit sn(t) = t e−(n+1)t xn = t e−t
(

x e−t
)n

. Comme
∣

∣e−tx
∣

∣ < 1 (car t > 0 et |x| ⩽ 1), la série géométrique
∑

(

x e−t
)n

converge, i.e. la série de fonctions
∑

sn converge simplement, et on a

+∞
∑

n=0

sn(t) = t e−t

+∞
∑

n=0

(

x e−t
)n

= t e−t 1

1 − x e−t
.

Enfin, en multipliant le numérateur et le dénominateur par et, on obtient
+∞
∑

n=0

sn(t) =
t

et −x
= f(t, x).

1. Comme on a montré la convergence de la première intégrale, on peut bien écrire ces égalités.
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Q7. Montrer que la série
∑

n⩾1

xn

n2
converge et déduire des questions précédentes que L(x) =

+∞
∑

n=1

xn

n2
.

• Comme x ∈ [−1 ; 1],

∣

∣

∣

∣

xn

n2

∣

∣

∣

∣

⩽
1

n2
. Or

∑ 1

n2
est une série de Riemann convergente. Par comparaison,

la série
∑ xn

n2
converge absolument donc converge .

• Par définition de L et la question précédente, pour tout x ∈ [−1 ; 1], on a L(x) = x

∫ +∞

0
f(t, x) dt =

x

∫ +∞

0

+∞
∑

n=0

sn(t) dt. Appliquons le théorème d’intégration terme à terme .

– D’après Q5, pour tout n ∈ N, sn est intégrable sur ]0 ; +∞[.

– D’après Q6, la série de fonctions
∑

sn converge simplement sur ]0 ; +∞[ vers t 7→ f(t, x) qui est
continue par morceaux sur ]0 ; +∞[.

– En reprenant les calculs de Q5, on a

∫ +∞

0
|sn(t)| dt = |x|n

∫ +∞

0
t e−(n+1)t dt =

|x|n

(n + 1)2
. Or,

d’après le début de cette question, la série
∑ |x|n

(n + 1)2
est convergente (simple glissement d’in-

dice).

Ainsi, d’après le théorème d’intégration terme à terme, pour tout x ∈ [−1 ; 1], on a

L(x) = x

∫ +∞

0

+∞
∑

n=0

sn(t) dt = x
+∞
∑

n=0

∫ +∞

0
sn(t) dt

Q5
= x

+∞
∑

n=0

xn

(n + 1)2
=

+∞
∑

n=0

xn+1

(n + 1)2
=

+∞
∑

n=1

xn

n2
.

Q8. Montrer que pour tout x ∈ [−1 ; 1], on a L(x) + L(−x) =
1

2
L

(

x2
)

.

Soit x ∈ [−1 ; 1]. Comme −x ∈ [−1 ; 1], par somme de deux séries convergentes,

L(x) + L(−x) =
+∞
∑

n=1

xn(1 + (−1)n)

n2
.

Or si n est impair 1 + (−1)n = 0 alors que si n est pair, 1 + (−1)n = 2. D’où

L(x) + L(−x) =
+∞
∑

p=1

x2p × 2

(2p)2
=

2

22

+∞
∑

p=1

(

x2
)p

p2
=

1

2
L

(

x2)

.

Q9. Déduire des questions précédentes les valeurs de L(1) et L(−1).

• D’après Q7, on a directement L(1) =
+∞
∑

n=1

1

n2
=

π2

6
d’après le résultat donné au tout début de

l’exercice.

• D’après la question précédente appliquée en x = 1 ∈ [−1 ; 1], on a L(1) + L(−1) =
1

2
L(1), i.e.

L(−1) =
−1

2
L(1) =

−π2

12
.

Partie III - Une autre propriété

Dans cette partie, on considère la fonction h : ]0 ; 1[ → R définie par :

∀x ∈ ]0 ; 1[, h(x) = L(x) + L(1 − x) + ln(x) ln(1 − x).
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On rappelle qu’on a montré dans la partie précédente l’égalité L(x) =
+∞
∑

n=0

xn

n2
valable pour tout x ∈ [−1 ; 1].

Q10. Justifier que la fonction L est dérivable sur ]−1, 1[.

Appliquons le théorème de dérivation terme à terme à la série de fonctions
∑

n⩾1

gn, où on a noté, pour

chaque n ∈ N
∗, gn : x 7→

xn

n2
.

– Pour tout n ∈ N
∗, gn est de classe C1 sur ]−1 ; 1[ en tant que fonction polynomiale. De plus, on

a g′

n : x 7→
xn−1

n
.

– D’après Q6,
∑

gn converge simplement sur [−1 ; 1] donc a fortiori sur ]−1 ; 1[.

– Soit 0 ⩽ a < 1 de façon que [−a ; a] ¢ ]−1 ; 1[.

Pour tout x ∈ [−a ; a], on a |g′

n(x)| =
|x|n−1

n
⩽

an−1

n
⩽ an−1 (car n ⩾ 1), majoration indépen-

dante de x. Par passage au sup, il vient ∥g′

n∥∞, [−a;a] ⩽ an−1. Or la série géométrique
∑

an−1

est convergente puisque |a| < 1. Ainsi la série de fonctions
∑

g′

n converge normalement donc
absolument sur [−a ; a].

Par théorème de dérivation terme à terme, on obtient que L est dérivable sur ]−1 ; 1[ et pour tout

x ∈ ]−1 ; 1[, L′(x) =
+∞
∑

n=1

g′

n(x) =
+∞
∑

n=1

xn−1

n
.

Remarque : on peut aussi montrer que L est dérivable comme intégrale à paramètre (cf partie I) mais
d’une part cela est moins agréable (rien que la dérivée de x 7→ f(t, x)), et d’autre part on sera bien
embêté pour la question suivante. Le rappel d’une expression de L en début de partie n’était pas là par
hasard.

Q11. On admet que pour tout x ∈ ]−1 ; 1[, ln(1 − x) = −
+∞
∑

n=1

xn

n
(ça sera un résultat de cours d’ici la fin

du mois).

Montrer que l’on a :

∀x ∈ ]−1 ; 1[, L′(x) =











−
ln(1 − x)

x
si x ̸= 0

1 si x = 0.

D’après la question précédente, pour tout x ∈ ]−1 ; 1[, L′(x) =
+∞
∑

n=1

xn−1

n
.

Si x = 0, cette somme vaut 1 (terme en x0).

Si x ̸= 0, on peut écrire, L′(x) =
1

x

+∞
∑

n=1

xn

n
=

− ln(1 − x)

x
d’après le résultat admis dans l’énoncé.

Q12. Montrer que la fonction h est constante sur ]0 ; 1[.

Sur ]0, 1[, h est dérivable par somme, produit et composées de fonctions dérivables (Q10 et fonctions
usuelles).

Pour tout x ∈ ]0 ; 1[, par dérivation de composées et d’un produit, on a

h′(x) = L′(x) − L′(1 − x) +
1

x
ln(1 − x) + ln(x)

−1

1 − x

= −
ln(1 − x)

x
+

ln
(

1 − (1 − x)
)

1 − x
+

ln(1 − x)

x
−

ln(x)

1 − x

= 0.

Q11 pour x ̸= 0
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Comme ]0 ; 1[ est un intervalle, on en déduit que la fonction h est constante sur ]0 ; 1[ .

Q13. Montrer que h(x) = L(1) pour tout x ∈ ]0 ; 1[. En déduire la valeur de l’intégrale

∫ +∞

0

t

2 et −1
dt.

• Passons à la limite lorsque x → 0+ dans l’expression définissant h.

Par Q4, L est continue en 0 donc L(x) −−−−→
x→0+

L(0) et L(1 − x) −−−−→
x→0+

L(1).

Par ailleurs, ln(x) ln(1 − x) ∼
x→0+

−x ln(x) −−−−→
x→0+

0 par croissances comparées.

Ainsi h(x) −−−−→
x→0+

L(1) et par constance de h (Q12), on obtient h(x) = L(1) pour tout x ∈ ]0 ; 1[ .

• D’une part,

∫ +∞

0

t

2 et −1
dt =

1

2

∫ +∞

0

t

et −1
2

dt = L(1/2) par définition intégrale de L (cf partie I).

D’autre part, prenons donc x = 1
2 ∈ ]0 ; 1[ dans l’expression de h. D’après le point précédent, on a

L(1) = L(1/2) + L(1/2) + ln(1/2) ln(1/2), ou encore L(1) = 2L(1/2) + (ln 2)2.

D’après Q9, cela se réarrange en L(1/2) =
π2

12
−

(ln 2)2

2
.

Finalement on obtient

∫ +∞

0

t

2 et −1
dt =

π2

12
−

(ln 2)2

2
.
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