Exercice 1. La fonction dilogarithme (d’aprés CCINP PC 2023)

Dans cet exercice, on commence par définir la fonction dilogarithme dans la premiere partie, puis on étudie
quelques-unes de ses propriétés dans les parties suivantes.

On admet et on pourra utiliser librement 1’égalité :

+001 2

™
22T

Partie I - Existence et premiéres propriétés de la fonction dilogarithme

Dans cette partie, on considéere la fonction f: ]0;+oo[ x |—00;1] — R définie par :

Q1.

Q2.

Q3.

Y(t,z) €]0;400] X |—00;1], f(t,z)= —

Justifier que la fonction f est bien définie sur |0 ; +o00[ X |—00;1].

Soient (¢,z) € ]0; 400 X ]—00;1]. Comme t > 0, on a e > 1, dott e~z > 1—2 >0 car z < 1. En

particulier, ‘on a toujours e! —x # 0 ‘ donc f est bien définie sur |0; +o0[ X |—o00;1].

Montrer que la fonction t — f(¢,1) est intégrable sur ]0; +ool.

D’abord, d’apreés la question précédente, t — f(t,1) = - est bien définie sur |0;+oo[ et y est

¢
e p—
continue | comme quotient de fonctions usuelles dont le dénominateur ne s’annule pas.

t t
e On a f(t,1) = P t]i:fo T tt o) -1 Kot 1 donc f est prolongeable par continuité en 0, d’ou

‘t — f(t,1) intégrable sur [0;1] ‘

o Par croissances comparées, on a f(t,1) = o(1/t?). Comme t +— 1/t* est intégrable sur [1;+oo|
(©.°]

(intégrale de Riemann avec 2 > 1), par comparaison, ‘t — f(t,1) est intégrable sur [1;+o0] ‘

Bilan : t — f(t,1) est intégrable sur ]0; +ool.

Soit & € |—o0;1]. En comparant les fonctions t — f(t,x) et t — f(¢,1), montrer que t — f(t,x) est
intégrable sur ]0; +ool.

Soit t > 0. Comme < 1, on a —x > —1, d’ot1 ¢! —z > e’ —1. En passant a l'inverse et en multipliant
par t > 0, on obtient ‘f(t, x) < f(t,1) ‘ De plus, d’apres Q1, f(t,z) > 0.

Or, d’apres la question précédente, ¢t — f(¢,1) est intégrable sur |0;+oo[ donc par de

fonctions positives ‘, t — f(t,x) est intégrable sur |0; +oo].

D’apres les résultats précédents, on peut définir la fonction L: |—oo;1] — R par :

Vo € ]—o00;1], L(z)= m/;oo f(t,x)dt.

Cette derniere est appelée fonction dilogarithme.

Q4. Montrer que la fonction L est continue sur |—oo;1].

+oo
Appliquons le ‘ théoréme de continuité d’une intégrale a paramétre‘ ax— / f(t,x)dt .
0

— Pour tout ¢t € ]0; +o0[, x — f(t,z) est continue sur |—oo; 1] (cf Q2).
— Pour tout z € |—o0; 1], t — f(t,x) est continue (par morceaux) sur |0; +oo].
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— Pour tout x € |—00;1], t € ]0;+00[, d’apres la question précédente, 0 < f(t,x) < f(¢,1) = o(t).
On a ¢ indépendante de z et intégrable sur |0 ; +oo] par Q2.

“+oo
Ainsi x — / f(t,xz)dt est continue sur |—o0o; 1]. De plus, z — x est continue sur R.
0

Finalement, par produit de fonctions continues, ‘L est continue sur |—o0 ;1] ‘

Partie II - Développement en série

Dans cette partie, on montre que la fonction L peut s’écrire comme la somme d’une série. On considére un
nombre réel x € [—1;1]. Pour tout n € N, on définit la fonction s,: |0;+oo[ — R par

Vt €]0,+00], s,(t) =te TV

“+o00 13”

(n+1)2
Ici z € [-1;1] et n € N sont fixés. On peut donc sortir le 2™ de l'intégrale par simple linéarité et

“+o00
n’étudier que / te~ (Dt q¢,
0

o D’abord t — te~ (1! est continue et positive sur [0; +oo[ (en particulier pas de probleme en 0).

+o0
Q5. Soit n € N. Montrer que l'intégrale / sp(t) dt converge et que / sp(t)dt =
0

0

Comme n + 1 > 0, par croissances comparées, t e~ (7Tt = o(1/t%).
(0.)

1 e
Ort— o) est intégrable en +00, donc par comparaison de fonctions positives I'intégrale / sp(t) dt
0

est | convergente |.

B o calies] u=t t
° our le calcu , pOSODS U/ _ e—(n+1)t e ;1 —(n+1)t o0

par croissances comparées.

<
I

Ainsi par ‘intégration par parties généralisées ‘, on a

+
/+°°te—(n+1)t df — /+°O 1 maneg {—1 e—(n—l—l)t} = DRI
0 0 n—+1 n+1lin+1 0 (n—i—1)2
+00 "
Enfin, en multipliant par la constante z™, on obtient comme souhaité / sp(t)dt = W
0 n

Q6. Montrer que la série de fonctions Z sp, converge simplement sur ]0; +oo[ et que :

n=0
+o0

Vt €105+, D sult) = f(t, ).
n=0

On rappelle que x € [~1;1] est fixé. Soit ¢ > 0. On éerit s,(t) = te= ™" = te~t(ze™)". Comme

le7fz| <1 (car t > 0 et |z| < 1), la ’ série géométrique‘ Z(x e )" converge, i.e. la série de fonctions

E sp converge simplement, et on a

“+o0o +oo 1
t)=te e ' =tet ———.

S

n=0 n=0
+oo t

Enfin, en multipliant le numérateur et le dénominateur par ef, on obtient Z sn(t) = — = f(t,x).
et —x

n=0

1. Comme on a montré la convergence de la premieére intégrale, on peut bien écrire ces égalités.
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n 400 n

x
Q7. Montrer que la série E — converge et déduire des questions précédentes que L(x) = E —.
n
n>1 n=1

n

T
o Comme z € [—1;1], — —. Or Z — est une série de Riemann convergente. Par comparaison,
n

n2 n2

n
2.0 €T

la série E — converge absolument donc converge |
n

+o0o
o Par définition de L et la question précédente, pour tout z € [—1;1], on a L(x) = x/ flt,x)dt =
0

+o00 10
x / Z sn(t) dt. Appliquons ’ le théoreme d’intégration terme a terme ‘
0 n=0
D’apres Q5, pour tout n € N, s, est intégrable sur |0 ; +o0].

— D’apres QB6, la série de fonctions Z Sp, converge simplement sur |0 ; 400 vers t — f(t,z) qui est
continue par morceaux sur |0 ;+oo].
|z["

CES

+00 +00

— En reprenant les calculs de Q5, on a / |sn(t)|dt = |x]"/ te~(M+Dtqp —
0 0

|z["

d’apres le début de cette question, la série Z (n+ 1)
n

dice).
Ainsi, d’apres le théoreme d’intégration terme a terme, pour tout = € [—1;1], on a
400 Fo0 +00 ez +00 pntl +oo "
T)=1x sp(t)dt =z / dt—x — = — = —.
) /0 Z n( Z (n+1)2 T;)(n+1)2 2

2
n=0 n:ln

5 est convergente (simple glissement d’in-

1
Q8. Montrer que pour tout x € [—1;1], on a L(z) + L(—z) = §L(x2).
Soit « € [—1;1]. Comme —z € [—1; 1], par somme de deux séries convergentes,
214 (=1)")
L(z)+ L(—=x) = Z _

2
n=1 n

Or si n est impair 1+ (—1)" = 0 alors que si n est pair, 1 + (—1)" = 2. D’ou

+oo 2p ) ) +00 1'2 1
2
L(z) + L(-z) = Zl @ = 2 Z =L |
Q9. Déduire des questions précédentes les valeurs de L(1) et L(—1).
+o00 1 7T2
o D’apres Q7, on a directement L(1) = Z 2= d’apres le résultat donné au tout début de
n
n=1

I’exercice.

1
o D’apres la question précédente appliquée en © = 1 € [—1;1], on a L(1) + L(—1) = QL(I), i.e.

— 2

12

L(-1)=SL(l)=

Partie III - Une autre propriété

Dans cette partie, on considere la fonction h: ]0; 1] — R définie par :

Ve €051, h(z)=L(z)+ L(1 —z)+ In(z) In(1 — z).
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+00 _n

On rappelle qu’on a montré dans la partie précédente 1’égalité L(zx) = Z T Jalable pour tout x € [—1;1].
n

2
n=0

Q10. Justifier que la fonction L est dérivable sur |—1,1].

Q11.

Q12.

Appliquons le ‘ théoreme de dérivation terme a terme ‘ a la série de fonctions Z Jn, OU ON a noté, pour
n>1

n
chaque n € N*, gn: & — —.
n

— Pour tout n € N*, g, est de classe C! sur ]—1;1[ en tant que fonction polynomiale. De plus, on
xnfl

agn: T

— D’apres Q6, Z gn converge simplement sur [—1;1] donc a fortiori sur |—1;1].
— Soit 0 < a < 1 de fagon que [—a;a] C]—1;1].
‘aﬂnfl anfl
<
n n
dante de x. Par passage au sup, il vient |/g;|loc, [~a;a]

Pour tout = € [—a;al, on a |g,(z)| = < a" ! (car n > 1), majoration indépen-
< a™ L Or la série géométrique Za”_l

. 0 0 2 o 0 /
est convergente puisque |a| < 1. Ainsi la série de fonctions » g}, converge normalement donc
absolument sur [—a;al.

Par théoreme de dérivation terme a terme, on obtient que ‘L est dérivable sur |—1; 1[‘ et pour tout

+0o +“>wn—1
/
el-11) U@ = Y sh@) = 3.
n=1 n=1

Remarque : on peut aussi montrer que L est dérivable comme intégrale a paramétre (cf partie I) mais
d’une part cela est moins agréable (rien que la dérivée de x — f(t,x)), et d’autre part on sera bien
embété pour la question suivante. Le rappel d’une expression de L en début de partie n’était pas la par
hasard.

—+00 n
On admet que pour tout z € |—1;1[, In(1 —z) = — Z T (¢a sera un résultat de cours d’ici la fin
n
n=1
du mois).
Montrer que 'on a :
In(1 —x)
———— six#0
Ve e]-1;1, L'(z)= x 7
1 six=0.
+“>xn71
D’apres la question précédente, pour tout x € |—1;1[, L'(z) = Z
n
n=1
‘Si x = 0, cette somme vaut 1 ‘ (terme en 20).
13Xz | —In(1-
Si z # 0, on peut écrire, L'(x) = — Ly M d’apres le résultat admis dans 1’énoncé.
% n 2
n=1

Montrer que la fonction h est constante sur |0;1].

Sur ]0, 1], h est dérivable par somme, produit et composées de fonctions dérivables (Q10 et fonctions
usuelles).

Pour tout = € ]0; 1], par dérivation de composées et d'un produit, on a

W(z) = I'(z) — /(1 — 2) + iln(l ~ ) +Ina) T

In(1 — z) N In(1—(1-u2)) N In(1-=) In(x)
z 11—z z 1—2x

> Q11 pour x #0
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Q13.

Comme ]0;1[ est un intervalle, on en déduit que ‘la fonction h est constante sur ]0;1[ ‘

+oo t
Montrer que h(xz) = L(1) pour tout « € |0;1[. En déduire la valeur de l'intégrale / St 1 dt.
0 € —

o Passons \a la limite lorsque z — 0T ‘ dans ’expression définissant h.

Par Q4, L est continue en 0 donc L(z) —— L(0) et L(1 — x) —— L(1).
z—0+ z—0t

Par ailleurs, In(x)In(1 —z) ~ —=zln(x) —— 0 par croissances comparées.
z—07F z—07t

Ainsi h(z) — L(1) et par constance de h (Q12), on obtient ‘h(z) = L(1) pour tout = € ]0;1] ‘

z—0t

too 1 [t ¢
o D’une part, / —dt = 7/ —— dt = L(1/2) par définition intégrale de L (cf partie I).
0 2 et —1 2 0 et b)

D’autre part, prenons donc z = % € ]0;1[ dans l'expression de h. D’aprés le point précédent, on a
L(1) = L(1/2) + L(1/2) + In(1/2) In(1/2), ou encore L(1) = 2L(1/2) + (In2)2.

2 In2 2

D’aprés Q9, cela se réarrange en L(1/2) = % — ( n2 ) .
+oo t 2 In2 2

Finalement on obtient /0 - dt = % - ( n2 ) I
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